A Review of Intelligent Practices for Irrigation Prediction

نویسندگان

  • Hans Krupakar
  • Akshay Jayakumar
  • Dhivya G
چکیده

Population growth and increasing droughts are creating unprecedented strain on the continued availability of water resources. Since irrigation is a major consumer of fresh water, wastage of resources in this sector could have strong consequences. To address this issue, irrigation water management and prediction techniques need to be employed effectively and should be able to account for the variabilities present in the environment. The different techniques surveyed in this paper can be classified into two categories: computational and statistical. Computational methods deal with scientific correlations between physical parameters whereas statistical methods involve specific prediction algorithms that can be used to automate the process of irrigation water prediction. These algorithms interpret semantic relationships between the various parameters of temperature, pressure, evapotranspiration etc. and store them as numerical precomputed entities specific to the conditions and the area used as the data for the training corpus used to train it. We focus on reviewing the computational methods used to determine Evapotranspiration and its implications. We compare the efficiencies of different data mining and machine learning methods implemented in this area, such as Logistic Regression, Decision Tress Classifier, SysFor, Support Vector Machine(SVM), Fuzzy Logic techniques, Artifical Neural Networks(ANNs) and various hybrids of Genetic Algorithms (GA) applied to irrigation prediction. We also recommend a possible technique for the same based on its superior results in other such time series analysis tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designing and Dismounting an Intelligent System of Irrigation Management for Greenhouse based on Delphi Software

The drought continuity and also restricting watery sources caused agriculture section forgetold flooding methods for optimum water exploitation and proceeding new irrigation systems.New generation of irrigation systems called intelligent systems is a new solution leading toexploiting water increase to higher than 80%. In order to measure sensors and to controlprocessors in designing and dismoun...

متن کامل

Diagnosis Prediction of Lichen Planus, Leukoplakia and Oral Squamous Cell Carcinoma by using an Intelligent System Based on Artificial Neural Networks

Introduction: Diagnosis, prediction and control of oral lesions is usually done classically based on clinical signs and histopathologic features. Due to lack of timely diagnosis in all conventional methods or differential diagnosis, biopsy of patient is needed. Therefore, the patient might be irritated. So, an intelligent method for quick and accurate diagnosis would be crucial. Intelligent sys...

متن کامل

Electrofacies clustering and a hybrid intelligent based method for porosity and permeability prediction in the South Pars Gas Field, Persian Gulf

This paper proposes a two-step approach for characterizing the reservoir properties of the world’s largest non-associated gas reservoir. This approach integrates geological and petrophysical data and compares them with the field performance analysis to achieve a practical electrofacies clustering. Porosity and permeability prediction is done on the basis of linear functions, succeeding the elec...

متن کامل

Linking Brain Biology to Intellectual Endowment: A Review on the Associations of Human Intelligence With Neuroimaging Data

Human intelligence has always been a fascinating subject for scientists. Since the inception of Spearman’s general intelligence in the early 1900s, there has been significant progress towards characterizing different aspects of intelligence and its relationship with structural and functional features of the brain. In recent years, the invention of sophisticated brain imaging devices using Diffu...

متن کامل

Intelligent application for Heart disease detection using Hybrid Optimization algorithm

Prediction of heart disease is very important because it is one of the causes of death around the world. Moreover, heart disease prediction in the early stage plays a main role in the treatment and recovery disease and reduces costs of diagnosis disease and side effects it. Machine learning algorithms are able to identify an effective pattern for diagnosis and treatment of the disease and ident...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1612.02893  شماره 

صفحات  -

تاریخ انتشار 2016